Tips på bra böcker om spelteori och oddssättning? - - Sveriges bästa sportsbettingforum med rekar, spelförslag och bettingtips

winning bets for today

Dalkurd FF vs IFK Varnamo H2H stats, betting tips & odds. Watch vs live & check their rivalry & record.
På hittar du de hetaste bonusarna för odds, betting och casino hos ledande spelbolag. Vi erbjuder även unika bonusar och kampanjer för.
Sweden Allsvenskan Betting Odds. View all available outright and match odds, plus get news, tips, free bets and money-back offers. All you need to bet.

Play >>>

Ljungskile vs Degerfors H2H Stats Record & Results - Watch Live MatchStat

Surebet outcome number: 2, 3, 4 or more. Surebet type (formula):. Win 1 - Win 2. Odds, With commission, Bet, Exchange rates, D, F, Profit. rate of exchange on.
Strange Odds in Football Bets very often lead to Dropping Odds and fast odds movements. ✓ Soccer Predcitions! ✓ Daily. Today. Odds Rating Available.
Sweden Allsvenskan Betting Odds. View all available outright and match odds, plus get news, tips, free bets and money-back offers. All you need to bet.
Sveriges bästa odds och liveodds hos Unibet. Få en startbonus NU upp till 1200 kr!

Play here >>> winning bets for today


Football Prediction Sites - Soccer Predictions For Today

Play online >>>

What I learned about Big Data and Machine Learning from trying to predict football matches.

Lindsdals IF & FC Rosengård today - Fotbollsgnäll | LifeEdge

What I learned about Big Data and Machine Learning from trying to predict football matches.
Lyckligtvis ligger mina fritidsintressen och mitt jobb inte allt för långt ifrån varandra, så att det nu kunnat gynna även Wide Ideas.
En fördjupning i resan kommer här!
Two years ago I asked myself if it in any way would be possible to use Machine Learning techniques to predict the outcome of football matches.
Data mining To describe the process briefly I started by collecting as much data as I could get hold of.
I mined data about old games from every different source and API I could find.
Some of the more important ones were Football-data, Everysport and Betfair.
I then took all the data for from the old matches, with its corresponding results, quantified it and put it in a database.
Finally I used the data to train a Machine Learning model, using it to predict upcoming games.
How to measure how well a model performs Now, the nature of a football game is, of course, that it is unpredictable.
I guess that is why we love the game.
But I still was a bit obsessed by the naive idea that I with a Machine Learning approach was going to be able to predict games better than I would using my own mind.
I knew from the past that I, as most humans do, base on emotions, rather than facts and that I am somewhat biased.
The first question I now had to answer was how to measure if my Machine Learning model was successful or not.
And the best thing I could come up with relating the model to was what other people were thinking.
The easiest way to assess that would be to look at market regulated odds.
The result So now, two years has passed.
Has the model made me rich?
No, not at all.
Quite soon I realized that the predictions my model made for most part was aligned with the market.
And at the strongest grades winning bets for today probability my model gives, it predicts roughly 70% of the games correctly.
Now the problem is that the market more or less performs just as well making it hard to actually make money out of my model.
But, to be honest, I never really thought that I would create a money machine.
Instead I have come to several insights about the possibilities and limitations of Big Data and Machine Learning.
How much does a model learn over time?
One of the first things I started looking at was that, since the nature of Machine Learning would be that it in theory gets better over time — as the amount of data the model has to learn from grows, the outcome of the predictions would improve.
Two years ago I started with having about 2000 games in my database with quite a limited dataset attached to them.
Now I have almost 30000 games, complete with lots of data covering everything from weather and distances between the teams home grounds to shots and corners for and against.
This has taught me that machine learning only takes you so far in trying to predict the unpredictable.
Generalization Another important lesson I have learned is the power of machine learning still in many ways lies in its power to make unbiased generalizations.
Over the past two years I was very curious to see if my model could predict when winning or losing streaks were to be broken.
If it for instance could predict when Barcelona would finally lose after winning 10 straight games.
If the model winning bets for today find small signs that would indicate some kind of anomaly.
Well, it has shown to not be that good at that.
What I winning bets for today instead was that it was really good at, over time bet against over valued teams.
Last season I for instance saw how my model quite often predicted against Borussia Dortmund while the market made another prediction.
Dortmund ended up having a bad season making my model really successful here in relation to the market.
This season I more casinos in connecticut seen the same when it comes to teams like Liverpool and Chelsea.
So the lesson learned is that some people tend to make decisions based on emotions.
Liverpool and Dortmund are teams liked by lots of people and at times you make predictions with your heart instead of your brain.
My Machine Learning model does not.
Easy gains Last but not least I guess I learned that making better predictions than the market is hard.
From a simple Python program and less than 10000 rows of code I still had made something that performed just as well as the market.
My model also is able to, on a weekly basis pick out interesting bets, just as any newspaper or expert does, but theirs with lots of manual labour behind.
So the main insight is that by making generalizations you might not be able to find the one bet that makes you rich but it may save lots winning bets for today time placed in the correct context.
What I wanted to do was to look at the ideas companies gather from their employees and try to predict whether the idea would be implemented or not.
We quantified the data but instead of shots and weather we looked at how many who had interacted with an idea and in what way.
We now can make a quite good prediction on whether an idea will be implemented or not given the data the idea contains.
This is a way of generalizing the ideas, answering the question, in general, what are the factors behind a good idea?
No, not really — not yet at least.
Still, for the product, and given that you look at an organisation that creates say 10000 ideas per year, finding any good idea is really hard and time consuming.
So just by going from 10000 ideas to 100 probably good ideas and visualizing the result saves a lot of time.
And this is where Machine Learning has given us the most gain.
Predicting the unpredictable To sum my thoughts up.
We see companies gathering lots of data promising that they might be able to predict anything from finding cancer to making self driving cars.
Especially where generalization saves time.
The medical implementations I think is a good example of this.
Looking at pictures of birthmarks a Winning bets for today Learning model can pick the most likely ones to be cancer from a large set of pictures saving doctors important time and money.
But a lot of the things companies may try to predict has an unpredictable nature.
Human behaviour is one.
In what way is human behaviour predictable?
How far can we come in predicting the human behaviour if it essentially is unpredictable?
We will be able to generalize, placing people into different categories based on what you like to eat, watch or do, but honestly, who likes to be generalized?
What the past two years has taught me is that we in some way right now may be seeing a Big-Data-bubble.
Will Big Data really find the anomalies or will it just be winning bets for today good at making generalizations?
I often believe that many of the promises made by companies tend to be that they will be able to find the needle in the haystack but that the results most often are generalizations.
I guess that one of the reasons they do this is because their values as companies right now often are based on the amount of data they possess and not what they do with it.
And if they were honest with the fact that the make generalizations, good ones but still generalizations, their value would decrease.
I hope that we can see a future where companies values are based on what they do with the data rather than how much data they have.
I only believe in it where the cases are clear and one of the most obvious and best ones are examples within healthcare.
The risk otherwise is that you end up with as much data that the sheer amount suffocates every possibility to make sense out of it in any other way than vast generalizations.
Med ett brinnande intresse för teknik ser han till att Wide Ideas ligger i absolut framkant.
Ola är också mannen bakom vår världsunika funktion Score som han konstruerat med hjälp av maskininlärning och artificiell intelligens.
Annat som är bra att känna till om Ola är att han älskar kaffe, fotboll, löpning och långa sovmorgnar.
Ett möte innan klockan nio är inte att tänka på.
Thanks for sharing your experience.
Maybe I have to use different approaches on preparing my knowledge base, things like using other variables, like weather, rest time between matches and others.
I guess another strength of using Machine Learning for trying so solve this kind of problems are that you can use a subset of your data as test-data to see what happens when you add new parameters to winning bets for today model.
I have done that a lot.
The result seldom improves more than fractions of one percent or at most a few percent, as were the case when I added shots data.
However just a slight improvement of the model can give quite an impact of the betting outcome.
Football related stuff goes to the blog in general.
I den här bloggen ger vi dig insikter och spaningar om idé- och innovationsarbete runt om i världen.
Vi delar även nyheter om Wide Ideas, vår digitala plattform för idéutveckling och innovation, samt ger nyttiga tips om hur du kan använda Wide Ideas för att engagera människor i utvecklingen av din organisation.
I kombination av vår djupa kompetens, långa erfarenhet och vår egenutvecklade applikation Wide Ideas för idéutveckling och innovation skapar vi förändrings- och innovationskraft i alla typer av organisationer.
Vi ser oss själva som en innovationsbyrå med passion för innovation och framgång för dig som kund.



  1. Unibet Sportbetting, ditt i särklass bästa bet. Spela för 400 SEK och få pengarna tillbaka om spelet går förlorat** Ladda ner Unibets Sportbetting.

  2. See more about Casino party, Dekoration and Partyn.. CHARLOTTE. Casino Party decoration 980 355 9696. Spara Läs mer på. Charlotte, NC. Blue Rey.

  3. setup. dirt download. gta games stunt games bike bronzer swatch. racing 5 casino free.

  4. ... playtech casino spel delta warren buffett amerikansk Helst eftersom kraftfullt som bsta playtech... of asean Integration College Iranian EFL learners 2 IndiaPay spielautomaten.... bet-roulett/648">bet roulett Basketball - United States.

  5. Njut av Afrikas mäktiga djur i vackra safarilandskap i Safari Heat Spelautomater Online. Spela på Slots Heaven Sverige och ta del av en fantastisk 3 000 kr.

  6. ... slot machines play money Casino online Cherry Casino Goteborg Jobb slot... Cherry Casino Goteborg Jobb blackjack bonus Slots for real money on ipad.

  7. Poker casino games download Australian online Spela Gratis Casino Spel... Spela Gratis Casino Spel jobs in casino phone number for riverwind casino man. pechanga casino new years eve 2012 Toy slot machine Spela Gratis Casino Spel. jackpot party casino slots free coins Spela Gratis Casino Spel casino quality.

  8. Köp boken How to Win Millions Playing Slot Machines! av Frank Legato,. exactly how slot machines work; which machines pay back the most money, and.

  9. När du är färdig med dina insatser sätter dealern igång roulettehjulet och kulan.. (à cheval resp. split bet): Du placerar din insats på linjen mellan två.

  10. The minerals beneath aboriginal land in the northcan benefit the nation's most.... I'm interested in cipralex 10 eller 20 mg Often at odds with local governments, Ron and Linda.... Home Secretary Theresa May announced the actions of council and police officials,.... Here is my page – casino mit paypal.

  11. AMD 2500+ @ 3200+ , 512 DDR , Ge Cube Radeon 9800 Pro , 120 gb. ○. (Längst ner har du en på.

  12. Hassleholm casinon pa natet casino action bonus codes Sverigecasino.. online Slots games on Mecca Bingo for free or real money Maestro Card, online Slots for. -code: No code required Bonus type: for Valid until: 2014-10-21 2015-01-12.

  13. Det är väldigt lätt att få en spelbonus eller bettingbonus när man. Det finns särskilda krav som är knutna till no deposit-bonusen, men den är.

Add camments

. *